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Abstract
This revised consensus statement of the Spanish Society of Medical Oncology (SEOM) and the Spanish Society of Patho-
logical Anatomy (SEAP) updates the recommendations for biomarkers use in the diagnosis and treatment of breast cancer 
that we first published in 2018. The expert group recommends determining in early breast cancer the estrogen receptor (ER), 
progesterone receptor (PR), Ki-67, and Human Epidermal growth factor Receptor 2 (HER2), as well as BReast CAncer 
(BRCA ) genes in high-risk HER2-negative breast cancer, to assist prognosis and help in indicating the therapeutic options, 
including hormone therapy, chemotherapy, anti-HER2 therapy, and other targeted therapies. One of the four available genetic 
prognostic platforms (Oncotype  DX®,  MammaPrint®,  Prosigna®, or  EndoPredict®) may be used in ER-positive patients 
with early breast cancer to establish a prognostic category and help decide with the patient whether adjuvant treatment may 
be limited to hormonal therapy. In second-line advanced breast cancer, in addition, phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha (PIK3CA) and estrogen receptor 1 (ESR1) should be tested in hormone-sensitive cases, BRCA  
gene mutations in HER2-negative cancers, and in triple-negative breast cancer (TNBC), programmed cell death-1 ligand 
(PD-L1). Newer biomarkers and technologies, including tumor-infiltrating lymphocytes (TILs), homologous recombination 
deficiency (HRD) testing, serine/threonine kinase (AKT) pathway activation, and next-generation sequencing (NGS), are 
at this point investigational.
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Introduction

Biomarker analysis in cancer provides information that com-
plements classical clinical factors, and also enables certain 
treatments in patients to be selected [1]. In breast cancer, 
biomarker analysis began with testing for hormone recep-
tor expression to guide tamoxifen therapy. The subsequent 
inclusion of targeted treatments against human epidermal 
growth factor receptor 2 (HER2) revolutionized the bio-
marker field. It also highlighted that biomarker test methods 
need to be standardized and harmonized. The intervening 

years have also seen progress in the understanding of single 
molecular abnormalities in breast cancer related to specific 
molecular therapies, such as BReast CAncer (BRCA ) gene, 
programmed cell death-1 ligand (PD-L1), phosphatidylino-
sitol 3-kinase (PI3K), or estrogen receptor 1 (ESR1). The 
clinical potential for monitoring disease using new technolo-
gies grouped under the term liquid biopsy is currently being 
studied.

The purpose of these revised consensus guidelines from 
the Spanish Society of Medical Oncology (SEOM) and the 
Spanish Society of Pathological Anatomy (SEAP) is to rec-
ommend which biomarkers should routinely be tested in 
patients with breast cancer; including conventional markers, 
genetic platforms, and newer technologies, as well as those 
that remain investigational. Recommendations are presented 
in a stratified fashion, depending on whether the breast can-
cer is in an early or advanced stage.
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Early‑stage breast cancer

Histological type and grade

Histological typing should be performed according to 
World Health Organization (WHO) criteria. Among lumi-
nal carcinomas, pure tubular, cribriform and mucinous car-
cinomas have better prognosis than invasive carcinomas of 
no special type (IC-NST). It is controversial whether inva-
sive lobular carcinoma has a different prognosis than IC-
NST, but an accurate diagnosis of this tumor type, based 
on both morphological features and E-cadherin expres-
sion pattern, is recommended, especially considering the 
specific clinicopathological and molecular features of this 
histological type. Among triple-negative tumors (TNBC), 
histological types of good prognosis include adenoid 
cystic carcinoma, secretory carcinoma, and other salivary 
gland-type tumors. In addition, fibromatosis-like and low-
grade adenosquamous carcinomas are two types of meta-
plastic carcinomas with good prognosis. In contrast, high-
grade metaplastic carcinomas (spindle cell, squamous, and 
matrix-producing carcinomas) have a worse prognosis and 
less response to chemotherapy than other TNBC.

Histological grade has independent prognostic value at 
all stages of breast cancer. Therefore, all invasive breast 
carcinomas, irrespective of their histological type, should be 
graded following a protocolized method [1]. The WHO clas-
sification recommends using the Nottingham (Elston-Ellis) 
modification of the Patey–Scarff and Bloom–Richardson 
grading system. Grading is evaluated by a numerical scoring 
system of 1–3 per category (tubular formation, nuclear pleo-
morphism, and mitotic count). Only clear central lumina 
enclosed by polarized cells should be counted for tubular/
gland formation. Nuclear pleomorphism is scored in the 
least differentiated tumoral area. Mitotic count is performed 
in the most proliferative area, typically at the periphery of 
the tumor. This parameter has been reported as the most 
important constituent of grade, so only clear mitosis should 
be counted. The final score should be adapted to the high-
power field size of the microscope used [2]. When these 
recommendations are strictly followed the inter-observer 
agreement level is high, and they can be applied to tissue 
obtained by core-needle biopsy [1]. In the future, artificial 
intelligence algorithms may be a helpful tool for improving 
reproducibility or even automatically grading breast carci-
nomas [3].

Hormone receptors

Estrogen receptor (ER)-alpha and progesterone receptor 
(PR) status must be determined in all newly diagnosed breast 
carcinomas, as well as in metastatic or recurrent tumors [4].

ERs are expressed in about 70% of invasive breast carci-
noma cases. ER is a strongly predictive factor of a response 
to hormone therapy as well as a favorable prognostic factor 
[5]. In the 2020 ER and PR guidelines from the American 
Society of Clinical Oncology and the College of American 
Pathologists (ASCO-CAP), the cut-off that indicates patients 
who will benefit from endocrine therapy remains at 1% of 
cancer nuclei stained for ER, irrespective of staining inten-
sity. About 2–3% of breast carcinomas will have 1–10% cell 
staining for ER. This group represents a clinical challenge, 
not only for the low reproducibility of the results between 
laboratories, but also for the real benefit of antiestrogenic 
therapy for these patients (these tumors seem more related 
at the molecular level to ER-negative tumors). In this sense, 
the ASCO-CAP guidelines divide the ER-positive result 
into positive >10% and low positive 1–10%, deciding the 
best treatment on the complete information about an indi-
vidual case [4]. Currently, immunohistochemistry (IHC) is 
recommended as primary screening. Only nuclear positiv-
ity in tumoral cells is scored, avoiding normal breast tissue 
from being mixed with the tumor. Both staining intensity 
and the percentage of positive cells are recorded. Alterna-
tively, a score can be reported, like the one described by 
Allred, et al., combining the estimated nuclear positivity 
rate in cancer cells (a score of 0–5, based on the percentage) 
with staining intensity (intensity 0–3) [6]. It is useful to test 
for ER-alpha in ductal carcinoma in situ because hormone 
suppression treatment can reduce the recurrence risk by 50% 
in ER-positive patients [7].

PR is expressed in about 60% of cases of invasive ductal 
carcinoma of the breast. In general, correlation between 
ER-alpha and PR expression is good, although 10% of 
cases may prove to be ER-alpha-positive and PR-nega-
tive. These patients have a higher risk of recurrence than 
ER-alpha-positive, PR-positive cases [8, 9]. Fewer than 
5% of patients may prove to be PR-positive, ER-negative. 
The methodology and quantification used are the same as 
for ER-alpha, with cut-off in 1% of stained nuclei. Recent 
studies suggest that PR expression <20% might have 
adverse prognostic implications [9]. PR determination in 
in situ carcinoma is optional [4].

Two-thirds of breast cancers express androgen receptors 
(ARs). Their role in carcinogenesis and as a novel therapeu-
tic target has been explored using antiandrogens either alone 
or in combination, with some promising yet limited clinical 
results [10, 11]. Current guidelines do not include AR deter-
mination as a routine biomarker for clinical practice [12].
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HER2 assessment

HER2 must be analyzed for overexpression or amplification 
in all breast carcinomas, whether early or advanced. HER2 
amplification is a predictive factor for anti-HER2 therapies 
and an unfavorable prognostic factor, when not treated. The 
use of anti-HER2 antibodies in combination with chemo-
therapy or hormonal therapy has dramatically improved the 
clinical course of HER2-positive breast cancer. A better 
understanding of tumor biology and HER2 signaling has 
led to the development of new strategies to further improve 
patient outcomes. Current novel HER2-targeted therapies 
include dual-HER2 inhibition with monoclonal antibod-
ies, such as trastuzumab plus pertuzumab; antibody–drug 
conjugates such as trastuzumab emtansine or trastuzumab-
deruxtecan (T-DXd); and tyrosine kinase inhibitors such as 
lapatinib, tucatinib or neratinib. The measurement and defi-
nition of HER2 amplification or overexpression have also 
been optimized over the years [13].

HER2 status is routinely assessed using a combination of 
IHC to evaluate HER2 protein expression levels and in situ 
hybridization (ISH) to assess HER2 gene status. Several 
HER2 test methods are valid, provided the technology is 
standardized according to the manufacturer’s instructions, 
and supported by an external quality-control program [14]. 

There is a high concordance (98–99%) between HER2 
results in core biopsies and surgical specimens, and a core 
biopsy sample is often the material of choice for HER2 
determination [15], since the availability of pre-treatment 
biomarkers status allows clinicians to treat patients with the 
most appropriate neoadjuvant therapy (NAT) and provide 
important prognostic and biological information. Optimal 
tissue handling requirements are of primary importance and 
fixation time should not exceed 72 h. Importantly, in cases 
when pre-analytical conditions could not be guaranteed, 
this should be specified in the pathology report. The current 
ASCO-CAP recommendations propose that the HER2 test 
be repeated on the excision specimen if there are concerns 
about discordance between histopathologic findings [14, 
16]. The indications of possible HER2 test discordance are 
specified in detail in the guidelines [16]. Of note, it is not 
mandatory to retest grade 3 tumors in the absence of other 
clinical-pathological criteria.

HER2 expression should be interpreted according to 
the 2023 ASCO-CAP guidelines [17], slightly modified in 
Fig. 1, which includes staining intensity, percentage of cells 
and staining localization [16]. However, some specific sce-
narios are taken into consideration. For instance, when mod-
erate to intense basolateral or lateral membrane IHC staining 
is detected (a pattern frequently observed in micropapillary 

Fig. 1  Algorithm for HER2 assessment in infiltrating breast carci-
noma with an initial IHC approach. CEP17: chromosome enumera-
tion probe 17; HER2: human epidermal growth factor receptor 2; 

IHC: immunohistochemistry. Results framed in dashed lines should 
be accompanied with a comment
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carcinomas), or circumferential membrane IHC staining that 
is intense but within ≤10% of tumor cells (heterogeneous but 
very limited) is observed, it is preferable to consider those 
cases as equivocal (2+) and a new test is desirable.

In relation to ISH tests, those laboratories using single-
probe ISH assays should be encouraged to include concomi-
tant IHC review as part of the interpretation. This concomi-
tant review should be performed in the same institution to 
ensure parallel interpretation and quality of the two assays. 
The current diagnostic approach also includes more rigorous 
interpretation criteria for dual-probe ISH assay and requires 
concomitant IHC review in certain scenarios to come to the 
most accurate HER2 status designation. Those scenarios 
include an average HER2 copy number <4.0 signals/cell 
with a HER2/CEP17 ratio ≥2.0 or an average HER2 copy 
number ≥6.0 signals/cell or ≥4.0 and <6.0 signals/cell with 
a HER2/CEP17 ratio <2.0. If the concomitant interpretation 
of the IHC and ISH techniques in these three scenarios is 
a final negative result, a comment should be added in the 
final report to clarify the absence of robust evidence sup-
porting the use of anti-HER2 therapies (Fig. 1). Importantly, 
if a patient develops a recurrence or metastatic disease, a 
new HER2 test should be performed if a tissue sample is 
available.

HER2 intratumoral heterogeneity has been described in 
up to 40% of breast carcinomas, especially in HER2 equivo-
cal or HER2 borderline cases, or chromosome 17 polysomy. 
The presence of HER2 heterogeneity has been associated 
with a worse prognosis and lesser anti-HER2 treatment 
response [18].

According to current guidelines, classifying breast 
tumors as HER2 IHC-3+ or with HER2 gene amplification 
assessed by ISH is the primary predictor of responsiveness 
to HER2-targeted therapies. For some recently developed 
anti-HER2 therapies, HER2 expression may be a continuous 
variable in terms of treatment effect. Tumors with IHC-1+ 
or 2+ and with a negative ISH result (until now reported 
as HER2-negative) might be re-defined as HER2-low, with 
HER2 negativity being limited to IHC-0 (Fig. 1). Based on 
this definition, up to 55% of breast cancers are HER2-low, 
comprising a majority of hormone receptor-positive (HR-
positive) tumors (65–83%) with different intrinsic sub-
types [13, 19]. Although it has been shown that HER2-low 
tumors do not benefit from adjuvant trastuzumab [20], some 
HER2-directed antibody–drug conjugates such as T-DXd 
are effective in HER2-positive disease and also in HER2-
low tumors with no amplification. In a randomized clinical 
trial performed in 557 HER2-low previously treated meta-
static breast cancers, T-DXd resulted in significantly longer 
progression-free survival (PFS) and overall survival (OS) 
than the physician’s choice of chemotherapy [21]. Although 
primary metastatic breast cancer had a significantly lower 
HER2-low discordance rate than secondary metastatic breast 

cancer, it has been observed that relevant HER2 discordance 
rates are observed between different metastatic sites and 
molecular subtypes, therefore highlighting the importance 
of evaluating potentially therapy-relevant HER2-low dis-
cordance rates between a primary tumor and corresponding 
distant metastases [22]. Regarding the new HER2-low sce-
nario, the 2023 ASCO-CAP guidelines do not recommend 
changing reporting terminology for lower levels of HER2 
IHC expression (e.g., HER2-low), while the 2023 ESMO 
expert consensus statements of HER2-low recommend clas-
sifying all levels of HER2 expression [23]. However, the 
score 0 versus 1+ must be informed in all HER2-negative 
cases, to ensure the eligibility criteria for T-DXd therapy. 
The guidelines also provide best practices for discrimination 
of IHC 0 versus 1+.

Neratinib is a kinase inhibitor indicated for the extended 
adjuvant treatment of adult patients with early-stage ER-
positive HER2-overexpressed/amplified breast cancer, to 
follow adjuvant trastuzumab-based therapy, when there is a 
high risk of relapse (node-positive disease) [24].

Ki‑67

Ki-67 is a nuclear protein found in all phases of the cell 
cycle except G0. Ki-67 expression is related, although not 
completely, to the histological grading of breast carcinomas. 
Immunohistochemical assessment of Ki-67 is the method 
most widely used to determine the proliferative activity of 
breast cancer, although the reproducibility of the results 
between laboratories has been disputed [12].

Calibrating the method in different laboratories substan-
tially increases the concordance between results [25]. An 
international Ki-67 working group in breast cancer devel-
oped a website (https:// www. ki67i nbrea stcan cerwg. org/) 
that includes an app for scoring Ki-67 more accurately [26]. 
Briefly, to score Ki-67, any cells with any degree/intensity 
of brown nuclear staining are considered positive. The whole 
slide should be evaluated, estimating the percent area with 
negligible, low, medium, or high Ki-67 index. A hundred 
negative or positive nuclei in each field type should be 
counted and finally a “weighted global score” recorded for 
that slide [25].

Cut-off point selection for clinical application remains 
a controversial matter. Given the lack of standardization, 
both the 2021 St. Gallen consensus [27] and the Ki-67 work-
ing group [28] consider that only very low (<5%) or very 
high (>30%) values can be reliably categorized as low or 
high proliferation by visual scoring of Ki-67 IHC in routine 
clinical practice. In this way, in ER-positive early breast can-
cer with Ki-67 between 6 and 29%, a multi-parameter gene 
expression assay has been recommended to help in guiding 
adjuvant treatment [27].

https://www.ki67inbreastcancerwg.org/
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Other potential uses for Ki-67 include prediction of 
responsiveness/resistance to chemotherapy or endocrine 
therapy, estimation of residual risk in patients on standard 
therapy and dynamic biomarker of treatment efficacy in 
samples taken before, during, and after NAT, particularly 
neoadjuvant endocrine therapy identifying patients who can 
be spared intensive chemotherapy in the adjuvant setting 
[29–31].

In advanced breast cancer, Ki-67 has also shown rele-
vance in predicting response to cell cycle inhibitors. PFS in 
patients undergoing endocrine therapy plus CDK4/6i was 
inversely correlated with Ki-67 expression, suggesting that 
tumor proliferation has a great impact on cell cycle inhibi-
tors combined with endocrine therapy [32].

Ki-67 is a useful prognostic tool that, in combination with 
other clinical factors, has a value comparable to that of more 
complex gene expression analyses [33]. The systematic use 
of digital imaging analysis will improve its reproducibility 
and value in the coming years [34].

Genetic platforms for prognosis and chemotherapy 
guidance

Gene expression signatures can be helpful in deciding 
whether to use adjuvant chemotherapy in early breast cancer. 
Several retrospective studies have suggested the clinical util-
ity of genomic signatures, although only Oncotype  DX® and 
 MammaPrint® are supported by prospective randomized tri-
als (Table 1). These signatures provide different information 

depending on the clinical setting and are not interchange-
able. The Oncotype  DX® trial was validated with level 1A 
evidence for prognosis and predicts the benefit of adjuvant 
chemotherapy in node-negative, ER-positive, HER2-nega-
tive early breast cancer (post- or pre-menopausal) and in 
node-positive post-menopausal cases.  MammaPrint® has 
level 1A prognostic evidence in node-negative, ER-posi-
tive, HER2-negative clinically high-risk breast carcinoma 
and level 1A evidence for determining prognosis in node-
positive disease. Further clinical evidence will clarify the 
use of multigene testing in the node-positive setting. In 
addition, clinicians should be aware of the clinical util-
ity and limitations when applying such tests, particularly 
since some authors have suggested that molecular testing to 
deliver personalized chemotherapy risks over- and under-
treatment [35].

Oncotype  DX®

Oncotype  DX® tests the expression of 21 genes and calcu-
lates a Recurrence Score (RS). Oncotype  DX® methodol-
ogy has been optimized for application to formalin-fixed 
tissue, and its results have had a proven impact on treatment 
decisions [42]. The value of Oncotype  DX® for predicting 
the benefit provided by chemotherapy and hormone therapy 
in these risk groups has been examined in various studies, 
involving both node-negative and node-positive patients [43, 
44]. The RS defines three prognostic groups. The 10-year 
distant recurrence rate in the low RS group is 7%, 14% in the 

Table 1  Recommendations for the prognostic and predictive value of different genetic tests in breast cancer

CT chemotherapy, ER estrogen receptor, HER2 human epidermal growth factor receptor 2, PR progesterone receptor

Recommendations Oncotype  DX® EndoPredict® Prosigna® MammaPrint®

NICE 2018 [36] Prognosis: ER+, HER2−, 
N0/N1 (pre/post-meno-
pausal)

Prediction: ER+, HER2−, 
N0

Prognosis: ER+, HER2−, 
N0/N1 (pre/post-meno-
pausal)

Prognosis: ER+, HER2−, 
N0/N1 (post-menopausal)

Not cost-effective

St Gallen 2019 [37] Highly recommended for 
T1–T3 N0 stages

Generic high recommenda-
tion for the use of CT in 
TxN1 stages

Generic recommendation for 
the use of CT in T1–T3 N0 
and TxN1 stages

Generic recommendation for 
the use of CT in T1–T3 N0 
and TxN1 stages

Generic recommendation for 
the use of CT in T1–T3 N0 
and TxN1 stages

ESMO 2019 [38] Evidence: 1A
ER+, HER2−, N0/N1

Evidence: 1B
ER+, HER2−, N0/N1

Evidence: 1B
ER+, HER2−, N0/N1

Evidence: 1A
ER+, HER2−, N0/N1

AJCC 2019 [39] Evidence: 1 Evidence: 2 Evidence: 2 Evidence: 2
ASCO 2019 [40] Evidence: High

ER/PR+, HER2−, N0
Evidence: Intermediate
ER/PR+, HER2−, N0

Evidence: High
ER/PR+, HER2−, N0

Evidence: High
For high-risk patients

NCCN 2021 [41] Prediction:Yes
Prognosis: Yes
Evidence 1 (post-menopau-

sal)
Evidence 2A (pre-meno-

pausal)

Prediction: No
Prognosis: Yes
Evidence: 2A

Prediction: No
Prognosis: Yes
Evidence: 2A

Prediction: No
Prognosis: Yes
Evidence: 1
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intermediate RS group, and 30% in high RS patients. Results 
of two prospective trials support recommendations for treat-
ment considering RS and menopausal age/state. TAILORx 
(Trial Assigning Individualized Options for Treatment [Rx]) 
was a prospective trial designed to determine the progno-
sis of a group of patients who had undergone surgery for 
ER-positive, HER2-negative, node-negative breast cancer 
with an RS of 11–25 [45]. At a median follow-up of 9 years, 
the hazard ratio (HR) for the endocrine group versus the 
chemoendocrine group was 1.08 (95% confidence interval 
[CI], 0.94–1.24), and the distant recurrence rate was 5%, 
regardless of chemotherapy administration, establishing that 
at age < 50 and RS 16–25, benefit can be obtained from the 
use of chemotherapy, whereas at age > 50 and RS < 25, there 
is no benefit from chemotherapy. Results from the RS < 11 
group reported a 0.7% risk of distant recurrence and a 1.3% 
risk of any other recurrence. These results were confirmed 
in the Surveillance Epidemiology and End Results (SEER) 
database registry [46]. It shows the benefit of chemotherapy 
in pre-menopausal women with low RS (≤25) and 1–3 axil-
lary lymph node involvement, with a median follow-up of 
5 years (HR 0.81; 95% CI, 0.67–0.98). Results showed a 
46% decrease in invasive disease-free survival and a 53% 
decrease in deaths, leading to an absolute improvement in 
OS at 5 years of 1.3%. Post-menopausal women with RS 
0–25 did not benefit from adjuvant chemotherapy in any 
subgroup [47].

MammaPrint®

MammaPrint® is a 70-gene signature test of prognostic value 
that classifies breast cancer patients into high-risk and low-
risk groups [48]. Initially, the test required fresh tissue, 
although now it is optimized on formalin-fixed paraffin-
embedded (FFPE) samples.  MammaPrint® was validated 
for early luminal breast cancer in node-negative patients in 
the RASTER trial. Its clinical utility has been demonstrated 
in the prospective randomized phase III MINDACT trial, 
performed in patients with either negative lymph nodes or 
1–3 positive lymph nodes. Groups with discrepant genomic 
and clinical risks were randomized to receive endocrine ther-
apy versus adjuvant chemotherapy and endocrine therapy, 
revealing that high-risk and low-risk patients had limited 
therapeutic benefit from the use of adjuvant therapy. Over-
all,  MammaPrint® has not achieved predictive utility, but 
it is the only multigenomic trial with prospective 1A evi-
dence level for evaluating prognosis in high-risk patients 
with node-negative and node-positive early luminal breast 
cancer. The WSG-PRIMe study has prospectively demon-
strated the impact of  MammaPrint® and BluePrint on treat-
ment decision [49]. BluePrint is an 80-gene assay that allows 
a molecular sub-classification into low-risk luminal tumors, 
high-risk luminal tumors, HER2 and basal type.

Prosigna® (PAM50/ROR)

Prosigna® (NanoString Technologies, Inc.) is a second-gen-
eration multigene signature, which includes 50 genes based 
on NanoString nCounter technology, approved to estimate 
the risk of distant relapse in early ER-positive breast can-
cer with up to 3 positive lymph nodes in post-menopausal 
women treated with endocrine therapy alone [50]. PAM50 
can be performed on FFPE samples locally and provides a 
proliferation-based measure of gene expression that, com-
bined with node status and tumor size, defines a risk score 
called risk of recurrence (ROR). ROR is divided into three 
risk groups: low (<10%), intermediate (10–20%) and high 
(>20%) ROR. It correlates with the probability of distant 
recurrence at 10 years.  Prosigna® also identifies molecu-
lar subtypes. It has been validated as a prognostic tool in 
the ABCG-8 and TransATAC trials, in patients treated with 
endocrine therapy, with ER-positive and node-negative dis-
ease, although prospective data on its predictive value are 
needed, which will be generated in the OPTIMA study in 
node-positive early breast cancer [51].

EndoPredict® (EPclin)

EndoPredict® (Myriad Genetics, Inc.) is a 12-gene prog-
nostic test that estimates 10-year relapse risk and provides 
information on potential long-term (beyond 5 years) hor-
monal therapies. The  EndoPredict® score can be combined 
with tumor size and node status to obtain the more compre-
hensive EPclin risk score. This test can be used to guide the 
therapy decision for chemotherapy and extended endocrine 
therapy [52]. This multigene test was evaluated in the GEI-
CAM-9906 trial as an independent prognostic parameter in 
patients with ER-positive, HER2-negative, and node-posi-
tive breast cancer for adjuvant chemotherapy and endocrine 
therapy. In the ABCSG6 and ABCSG8 trials,  EndoPredict® 
and EPclin were shown to provide additional information 
on the distant recurrence risk in patients with node-neg-
ative and node-positive disease, independent of clinico-
pathological parameters. EPclin can also be used to guide 
decision-making for the use of systemic chemotherapy in 
post-menopausal patients with ER-positive, HER2-negative, 
and node-negative breast tumors. For node-positive patients, 
 EndoPredict® clinical use is not recommended at this time.

BRCA 1/2 gene mutations and homologous 
recombination deficiency

Early breast cancer HER2-negative patients with high risk 
of recurrence should be tested for germline BRCA1 and 
BRCA2 mutations. For patients who have had previous 
surgery, high risk is defined as a tumor size >2 cm or any 
involved axillary node in TNBC cases, or ≥4 axillary nodes 
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in HR-positive disease. In patients who have had NAT, high 
risk derives from either any residual cancer in TNBC or 
high-grade residual disease in HR-positive disease (defined 
as a Clinical Pathological State + ER Grade [CPS + EG] 
score ≥3).

The OlympiA study was a phase III, double-blind, ran-
domized trial involving patients with HER2-negative early 
breast cancer with BRCA1 or BRCA2 germline pathogenic 
or likely pathogenic variants and high-risk clinicopathologi-
cal factors who had received local treatment and neoadjuvant 
or adjuvant chemotherapy. Patients were randomly assigned 
to 1 year of oral olaparib or placebo. The primary endpoint 
was invasive disease-free survival. Olaparib treatment was 
associated with significantly longer survival free of invasive 
or distant disease than placebo [53]. One year of adjuvant 
olaparib is currently indicated either alone or concurrently 
with endocrine therapy in early breast cancer with BRCA1- 
or BRCA2-mutated high-risk patients that have received 
local treatment and neoadjuvant or adjuvant chemotherapy.

Homologous recombination deficiency (HRD) may allow 
consideration of using DNA-damaging agents such as PARP 
inhibitors. To analyze the impairment of the homologous 
recombination pathway, specific mutations in homologous 
recombination repair genes other than BRCA1 or BRCA2, 
such as PALB2, ATM, CHEK2 and others, can be examined. 
The use of genomic scars, mutational signatures [54], or the 
development of functional tests can also be considered [55]. 
Currently, olaparib is not indicated in HRD cases, although 
HRD testing may be useful in the future.

PD‑L1

Programmed cell death-1 (PD-1) protein is an immune 
checkpoint inhibitor expressed on the surface of T cells, B 
cells, natural killer T cells, monocytes, and dendritic cells, 
but not resting T cells. PD-1 binds to two ligands, PD-L1 
(B7-H1) and PD-L2 (B7-DC). Activation of PD-1 by PD-L1 
or PD-L2 induces downregulation of T-cell activity, reduced 
cytokine production, T-cell lysis, and induction of tolerance 
to antigens. In solid tumors, the PD-1/PD-L1 inhibitory 
pathway can silence the immune system by increasing the 
expression of PD-L1 on the tumor cell surface [56, 57].

Currently, neoadjuvant therapy in patients with early TNBC 
would include the combination of chemotherapy with pem-
brolizumab, regardless of PD-L1 expression. In this setting, 
the combination of chemotherapy with pembrolizumab (KEY-
NOTE-522 trial) has showed evidence of efficacy [58, 59]. 
The Keynote 522 trial evaluated patients with stages II–III 
TNBC treated with 4 cycles of paclitaxel plus carboplatin with 
the addition of 4 cycles of either pembrolizumab (n = 784) or 
placebo (n = 390). Patients received postoperative pembroli-
zumab or placebo for up to 9 cycles. The primary endpoints 
of the study were pathological complete response (pCR) and 

event-free survival. The percentage with pCR was significantly 
higher among those who received pembrolizumab plus neoad-
juvant chemotherapy (64.8%) than among those who received 
placebo plus neoadjuvant chemotherapy (51.2%). The benefits 
of pembrolizumab-chemotherapy with respect to pCR were 
similar in PD-L1-positive and PD-L1-negative subgroups, 
although only 97 (16%) of the 602 cases in the trial were PDL-
1-negative. In a subsequent analysis, event-free survival was 
also improved in the combination group [60].

Tumor‑infiltrating lymphocytes

Breast cancer is an immunogenic tumor and, in the last few 
years, morphological evaluation of tumor-infiltrating lym-
phocytes (TILs) in breast cancer has been proposed as a 
potentially useful biomarker. It has been reported that every 
10% increment of stromal lymphocytes is associated with a 
16% reduction of risk of death in TNBC, and values around 
30–50% have been proposed for potential de-escalation of 
chemotherapies in this type of breast cancer. In the case of 
HER2-positive tumors, values >20% have been proposed 
for potential de-escalation of trastuzumab [61]. In contrast, 
increased TILs seemed to be an adverse prognostic factor 
for survival in luminal HER2-negative breast cancer, sug-
gesting a different biology of the immunological infiltrate 
in this subtype [62].

In 2014, the International TILs Working Group described 
a method to quantify TILs on hematoxylin and eosin-stained 
slides using light microscopy [63] (Table 2). Recently, to 
maximize inter-observer reproducibility, the International 
TILs working group has created a website (www. tilsi nbrea 
stcan cer. org) in which free training is available, and refer-
ence images are provided to allow direct visual comparison 
[64]. This methodology has been subsequently applied in 
lymph nodes and metastatic tissues [61]. We strongly recom-
mend the use of this tool for self-validation before starting 
routine reporting of TILs.

Emerging data suggest that TILs quantification can help 
clinicians to identify breast cancers with better response to 
PD-1/PD-L1 inhibition and better prognosis especially in 
TNBC. In the neoadjuvant setting, TILs are predictive of 
pCR with chemotherapy [65].

Although not a standard biomarker, we recommend quan-
tifying and reporting TILs to add valuable information about 
the immune response associated with each tumor.

Advanced‑stage breast cancer

PIK3CA

In  a  popula t ion  of  824 cases  of  HR-posi -
tive, HER2-negative tumors, the prevalence of 

http://www.tilsinbreastcancer.org
http://www.tilsinbreastcancer.org
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phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 
subunit alpha (PIK3CA) mutations was 31.4% [66]. Treat-
ment with alpelisib–fulvestrant has been found to prolong 
PFS among patients with PIK3CA-mutated, HR-positive, 
HER2-negative, advanced breast cancer who had received 
endocrine therapy previously in the SOLAR-1 phase III 
clinical trial [67]. Currently, alpelisib is indicated in combi-
nation with fulvestrant for the treatment of post-menopausal 
women, and men, with HR-positive, HER2-negative, locally 
advanced or metastatic breast cancer with a PIK3CA muta-
tion after disease progression following endocrine therapy 
as monotherapy.

Alpelisib monotherapy has also shown efficacy in heavily 
pretreated ER-positive breast cancer with PIK3CA mutations 
(30% response rate) [68]. It is interesting that a recent real-
life data study of 233 patients prospectively registered in the 
French alpelisib Early Access Program opened to PIK3CA-
mutant, HR-positive, HER2-negative ABC patients treated 
with alpelisib and fulvestrant, showed that patients had 
received a median number of 4 prior systemic treatments for 
ABC, including CDK4/6 inhibitor (97.4%), chemotherapy 
(77.3%), or everolimus (56.2%), respectively.

Furthermore, it has been reported at the 2023 San Anto-
nio Breast Cancer Symposium that inavolisib, another PI3K 
inhibitor, was more effective than placebo when combined 
with palbociclib and fulvestrant in the first-line treatment of 
patients with PIK3CA-mutated, HR-positive, HER2-nega-
tive, locally advanced or metastatic breast cancer (phase III 
INAVO1209).

Therefore, patients with advanced hormone-sensitive 
breast cancer should have their tumors tested for PIK3CA 
mutations, considering that at least one-third of cases harbor 
PIK3CA mutations and may benefit from PI3K inhibitors.

BRCA 1/2 gene mutations

In advanced breast cancer, the phase III OlympiAD study of 
olaparib compared with physician’s choice of chemother-
apy was conducted in patients with BRCA  mutations and 

HER2 non-overexpressing metastatic breast cancer that had 
received ≤2 prior therapies in the advanced setting. PFS, the 
primary endpoint, was significantly prolonged with olaparib 
versus standard therapy (7.0 vs. 4.2 months). There were no 
differences in OS, either at the interim or the final analysis 
[69].

The phase III EMBRACA trial enrolled patients with 
gBRCA1/2-mutated HER2-negative advanced breast cancer. 
Patients received talazoparib or physician’s choice of chemo-
therapy. Median PFS was significantly longer in the talazo-
parib group than in the standard therapy group (8.6 months 
vs. 5.6 months), but there were no differences in OS both at 
the interim and the final analysis [70].

Olaparib and, in some countries, talazoparib, are indi-
cated as single agents for previously treated breast cancer 
patients who have HER2-negative or HR-positive locally 
advanced or metastatic breast cancer with germline BRCA1/2 
mutations, or as first-line therapy when patients are not suit-
able for standard therapies.

BRCA1/2 testing, therefore, can provide a therapeu-
tic opportunity in advanced breast cancer with germline 
BRCA1/2 mutations and should be performed in this setting, 
if PARP inhibitors are available.

PD‑L1

The randomized controlled trials IMpassion130 [71] and 
Keynote-355 [58] have demonstrated the benefit of anti-
PD-1/PD-L1 agents atezolizumab and pembrolizumab, 
respectively, plus chemotherapy, in first-line metastatic 
TNBC, with PFS and OS improved in PD-L1-positive 
patients [59, 71, 72]. Therefore, measurement of PD-L1 
levels is a critical component in predicting patient benefit.

The combination of atezolizumab and nab-paclitaxel is 
recommended in the European Union as first-line treatment 
for PD-L1-positive (≥1%) metastatic TNBC, based on the 
results of the phase III IMpassion130 trial.

In the KEYNOTE-355 trial, with a more robust statistical 
design and results, 847 patients with advanced (unresectable, 

Table 2  Recommendations of the TILs Working Group for assessing TILs in breast cancer [63]

TILs: tumor-infiltrating lymphocytes. For more information and self-training: www. tilsi nbrea stcan cer. org [64]

1. One section (4–5 µm, magnification ×200–400) per patient is considered to be sufficient. Full sections are preferred over biopsies (in pre-
therapeutic neoadjuvant setting, cores can be used); currently, no validated methodology has been developed to score TILs after neoadjuvant 
treatment

2. TILs should be reported for the stromal compartment (% stromal TILs). The denominator used to determine the % stromal TILs is the area of 
stromal tissue

3. TILs should be evaluated exclusively within the borders of the invasive tumour, excluding TILs around ductal carcinoma in situ or normal 
lobules and zones with artefacts, necrosis, hyalinization as well as the previous biopsy site

4. All mononuclear cells (including lymphocytes and plasma cells) should be scored, but polymorphonuclear leukocytes are excluded
5. A full assessment of average TILs in the tumor area should be used
6. It should be scored as a continuous variable that will allow categorization of different thresholds and more accurate statistical analyses

http://www.tilsinbreastcancer.org
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locally advanced, or metastatic) TNBC were randomly 
assigned to receive chemotherapy (nab-paclitaxel, pacli-
taxel or gemcitabine plus carboplatin) plus pembrolizumab 
or chemotherapy plus placebo. OS improved in patients who 
received pembrolizumab and had tumors with relatively 
high levels of PD-L1 protein (PD-L1 CPS of at least 10%): 
23.0 months versus 16.1 months in control patients who 
received chemotherapy alone [73].

Patients with advanced TNBC should have PD-L1 tested 
in tumor tissue. According to the PD-L1 test that showed 
positive, pembrolizumab or atezolizumab should be used. 
The KEYNOTE studies used the 22C3 PD-L1 immunohis-
tochemistry assay (Agilent, Carpinteria, CA) to calculate a 
CPS estimated as the ratio of PD-L1-positive cells (tumor 
cells plus immune cells divided by the total number of viable 
tumor cells ×100 with a cut-off ≥10 [59, 73]). The IMpas-
sion trials, in contrast, used the SP142 PD-L1 immunohis-
tochemistry assay (Ventana, Tucson, AZ), measuring the 
proportion of tumor area that is occupied by PD-L1 staining 
in IC with cut-off in >1% of staining [58, 71, 72].

Most laboratories do not regularly use all possible PD-L1 
antibodies, and harmonization studies are needed. Rugo, 
et al. compared PD-L1 status on IC (VENTANA SP142, 
SP263, Dako 22C3) or as a CPS, and concluded that 22C3 
and SP263 identified more patients as PD-L1-positive than 
SP142 [74].

ESR1 mutations

A key mechanism of endocrine resistance is through mis-
sense mutations in ESR1, the gene that encodes for ER 
alpha. ESR1 mutations are present in about 30% of patients 
with metastatic breast cancer who have received aromatase 
inhibitors, although only in 5% of breast cancer recurring 
after adjuvant aromatase inhibitors, and 1% of endocrine 
therapy-naïve metastatic breast cancer [75]. Ligand binding 
domain mutations of ESR1 make the receptor constitutively 
active and thus unaffected by aromatase inhibitor depletion 
of estrogen. In contrast, ESR1 mutations do not appear to be 
a main mechanism of resistance to tamoxifen or fulvestrant 
[76]. Several selective ER modulators or covalent antago-
nists are being tested specifically against ESR1 mutations. 
Elacestrant is one of these oral selective ER degraders. The 
randomized phase III EMERALD trial enrolled patients with 
ER-positive, HER2-negative advanced breast cancer who 
had one or two lines of endocrine therapy, required pre-treat-
ment with a cyclin-dependent kinase 4/6 inhibitor, and had 
one or no lines of chemotherapy. Primary endpoints were 
PFS by blinded independent central review in all patients 
and patients with detectable ESR1 mutations. Detectable 
ESR1 mutations in circulating tumor DNA were detected 
in 47.8% of patients. PFS was prolonged in all patients, 
particularly in patients with ESR1 mutation. Elacestrant 

monotherapy is indicated by the Food and Drug Administra-
tion (FDA) and European Medicines Agency (EMA) for the 
treatment of post-menopausal women and adult men with 
HER2-negative, ER-positive advanced breast cancer, with 
an ESR1-activating mutation who have disease progression 
after receiving at least one line of endocrine therapy includ-
ing a CDK 4/6 inhibitor. Elacestrant is becoming increas-
ingly available, and testing for ESR1 mutations in advanced 
breast cancer with either liquid or tissue biopsy is currently 
recommended by clinical guidelines [41, 77].

AKT pathway activation

An additional mechanism of endocrine resistance in 
advanced breast cancer is related to serine/threonine kinase 
(AKT). AKT is the key node of the PI3K–AKT–PTEN 
signaling pathway. Overactivation of the pathway occurs in 
approximately half of HR-positive, HER2-negative breast 
cancers by means of activating mutations in PIK3CA and 
AKT1 and inactivating alterations in PTEN.

Capivasertib is an orally bioavailable, small molecule 
inhibitor of AKT. In a randomized, double-blind, placebo-
controlled, phase III trial, 708 patients were assigned to 
receive either oral capivasertib plus fulvestrant or a matching 
placebo plus fulvestrant. Capivasertib–fulvestrant therapy 
resulted in significantly longer PFS than treatment with ful-
vestrant alone among patients with HR-positive advanced 
breast cancer whose disease had progressed during or 
after previous aromatase inhibitor therapy with or without 
a CDK4/6 inhibitor. AKT pathway alterations (PIK3CA, 
AKT1, or PTEN) were assessed in tumors. Similar results 
were observed in the overall population and in the AKT 
pathway altered population. At this point, AKT pathway test-
ing for capivasertib use is still in research [78].

NTRK

NTRK gene fusions are tumor-agnostic biomarkers that 
predict response to NTRK inhibitors. Secretory breast car-
cinoma is a special histological type of breast carcinoma 
that carries the NTRK3-ETV6 fusion in about 90% of cases. 
Detection of this fusion by fluorescence ISH (FISH) or NGS 
can help in the correct diagnosis of this entity and in predict-
ing response to inhibitors in advanced tumors. In contrast, 
less than 1% of all breast cancer cases harbor NTRK fusions. 
Currently, NTRK testing is not required in advanced breast 
carcinoma.

TROP‑2

TROP-2 is a transmembrane calcium protein belonging to 
the EpCAM family that is expressed by normal human mul-
tistratified epithelia and trophoblast cells. Overexpression 
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can be present in several solid tumors, including TNBC. 
Approximately 86% of TNBCs are TROP-2-positive [79].

Sacituzumab govitecan is an antibody–drug conjugate 
that combines a humanized monoclonal antibody binding to 
TROP-2-expressing cancer cells (sacituzumab) with a topoi-
somerase I inhibitor (govitecan). Sacituzumab govitecan as 
a single agent is indicated for the treatment of adult patients 
with unresectable or metastatic TNBC who have received 
two or more prior systemic therapies, with at least one for 
advanced disease [80].

Different levels of TROP-2 expression did not have an 
apparent effect on the efficacy of the treatment in this study. 
Currently, TROP-2 testing is not required in order to use 
sacituzumab govitecan for this indication.

Other biomarkers

Assessment of other biomarkers that are targets of novel 
therapies, such as CDK amplification, FGFR1 amplification, 
or PTEN loss of heterozygosity or mutations, is not currently 
recommended.

Biomarker assessment following NAT

NAT, including chemotherapy, anti-HER2 therapy and hor-
monal therapy administered before surgery, has become 
part of the standard-of-care treatment of patients not only 
with locally advanced breast cancer but also with opera-
ble tumors, particularly in HER2-positive carcinomas and 
TNBC. Besides reducing tumor burden, NAT provides a 
unique opportunity to evaluate the tumor response to dif-
ferent treatments. The pCR is a well-established surrogate 
marker of improved prognosis in breast cancer. However, 
not all patients obtain a pCR, and these patients have a vary-
ing risk of relapse [81]. Importantly, substantial biological 
differences exist between treatment-naive breast cancer and 
residual tissue following NAT [82]. Re-assessment of bio-
markers in the residual breast cancer tissue may have both 
prognostic and potential therapeutic implications. Post-NAT 
pathological stage and biomarker status may help guide 
adjuvant treatment decisions. Accordingly, this SEOM-
SEAP consensus guideline recommends the following bio-
marker determinations, depending on the type of NAT.

Following neoadjuvant chemotherapy 
with or without anti‑HER2 therapy

Classic histopathological parameters such as ypTNM clas-
sification and histological grade provide valuable prognostic 
and predictive information when assessed in residual breast 
cancer tissue after NAT [83]. Additionally, the Residual 
Cancer Burden (RCB) index [81] is a clinically validated 

and standardized reporting system that does not incorporate 
response, but establishes risk of recurrence in patients with 
residual disease in both the breast and the lymph nodes. The 
parameters to be quantified and reported, as well as a calcu-
lator, are available online [84].

IHC-based biomarkers such as ER, PR, and HER2 may 
also be re-assessed if negative prior to treatment, to allow 
patients to benefit from targeted therapies and to obtain bio-
logical explanation for possible causes of intrinsic resistance 
to treatments. Although clinical decisions are not still made 
based on TILs, immune markers are among the most promis-
ing biomarkers in the post-NAT setting, in which extensive 
tumor infiltration by lymphocytes indicates a good prognosis 
in some breast tumor types, irrespective of residual tumor 
size. In TNBC, TILs levels are significantly associated with 
improved recurrence-free survival (RFS) and OS and add 
further prognostic information to RCB class, particularly in 
RCB class II [85].

Following neoadjuvant endocrine therapy 
in post‑menopausal patients

Ki‑67 after short‑term endocrine treatment

Ki-67 expression after 2 weeks of treatment (Ki-672W) may 
improve the prediction of RFS better than Ki-67 at base-
line  (Ki67B), as observed among patients enrolled in the 
IMPACT trial [86]. The POETIC trial provided evidence for 
the clinical validity of on-treatment aromatase inhibitor Ki-
672W in addition to Ki-67B to predict those with high resid-
ual risk of recurrence in spite of standard-of-care therapy 
[87]. Patients whose Ki-67B was low had good results, with 
85% of those receiving endocrine therapy alone. Patients 
whose tumors had a high baseline Ki-67 and a low Ki-672w, 
had a better prognosis at 5 years than those who continued 
to have a high Ki-672W.

Preoperative endocrine prognostic index (PEPI score)

Multivariable testing of post-treatment tumor characteristics 
including pathological tumor size, node status, Ki-67 level, 
and ER status were independently associated with RFS and 
breast cancer-specific survival. Of note, patients with low 
pathological stage at surgery and a favorable biomarker pro-
file (preoperative endocrine prognostic index [PEPI] score 
0) had such a low rate of recurrence that further adjuvant 
systemic therapy beyond continuation of endocrine therapy 
seemed unnecessary. In contrast, patients with high patho-
logical stage disease at surgery and a poor PEPI score (PEPI 
group 3) had a significantly higher risk of relapse, and there-
fore should be offered appropriate adjuvant treatments [88].
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New technologies

Next‑generation sequencing (NGS)

At present, NGS in breast cancer remains a research tool. 
NGS should not be used as an exploratory tool to prescribe 
treatments beyond the indications for which they have 
been approved, regardless of whether the target genetic 
alteration is detected [89]. The SAFIR01 study identi-
fied targetable genomic alterations in 195 cases (46%) 
in a series of 423 patients with advanced breast cancer, 
although ultimately only 55 received personalized treat-
ment and just 13 showed any type of response [90].

Therefore, more research is needed into the role of 
NGS in clinical practice before incorporating it into rou-
tine use, and efforts should be made to educate clinicians 
to increase their knowledge and confidence in such tech-
nologies [91]. An expert panel has produced a guidance 
document to rank DNA alterations into tiers of evidence 
for clinical utility for selecting breast cancer patients for 
targeted therapies according to ESMO Scale for Clinical 
Actionability of molecular Targets (ESCAT) [92]. Among 
40 recurrent driver alterations described in breast cancer, 
only HER2 amplification, germline BRCA1/2 mutations, 
and PIK3CA mutations were given level 1A evidence as 
molecular targets whereas NTRK fusions and microsatel-
lite instability (MSI) were ranked as 1C evidence.

  An update of the ESMO recommendations for the 
use of NGS in advanced cancer has been published very 
recently [93].  The authors consider that, since NGS 
can substitute germline BRCA  testing in most patients 
and ESR1 mutations have been reclassified as level 1A, 
performing NGS in advanced breast cancer  (tumor or 
plasma) is recommended in patients with HR-positive/
HER2-negative disease after resistance to endocrine 
therapy.

Liquid biopsy, circulating tumor cells, 
and circulating tumor DNA

Traditional methods of cancer detection, such as tissue 
biopsy, can sometimes not be comprehensive enough to 
capture the entire genomic landscape of breast tumors. The 
role of liquid biopsy in cancer management has been gain-
ing increased prominence in the past decade. Various com-
ponents of tumor cells released into the blood circulation 
can be analyzed in liquid biopsy sampling, some of which 
include circulating tumor cells (CTCs), circulating tumor 
DNA (ctDNA), cell-free RNA, tumor-educated platelets, 
and exosomes. These components can be used for different 
purposes. Currently one of the most investigated utilities 

of liquid biopsy is ctDNA testing in advanced breast can-
cer. The recent advances in massively parallel sequencing 
technologies have empowered liquid biopsies, particularly 
ctDNA analysis, to be the new paradigm in personalized 
cancer management.

Plasma ctDNA detection may overcome some of the 
current limitations in tumor tissue procurement and serves 
as a convenient and non-invasive method to capture tumor 
heterogeneity and genetic evolution along patients’ cancer 
journeys. ctDNA can be sequenced for genetic profiling of 
the tumors in selected patients for mutation-directed therapy 
[94–96]. Data from the plasmaMATCH study were recently 
reported [97], and showed that ctDNA testing for mutations 
has high sensitivity and accuracy for widespread adoption in 
clinical practice even to screen for rare oncogenic mutations. 
It is efficient and rapid for screening and allows evaluation 
of different acquired mutations throughout the evolution of 
the disease.

Recently, the FDA approved the Therascreen PIK3CA 
RGQ polymerase chain reaction assay as a companion diag-
nostic assay to detect PIK3CA mutations in breast cancer for 
both tissue and liquid biopsies, bringing the role of liquid 
biopsy into breast cancer management. In this context, alpe-
lisib, a PI3K inhibitor, was the first agent to be approved by 
the FDA and EMA [98].

In breast cancer, the current clinical application of ctDNA 
includes detection of drug-resistant clones. In this way ESR1 
mutation detection has already been shown as a predictive 
biomarker, used in clinical practice for metastatic hormone 
receptor breast cancer and in some cases, early switch of 
hormone therapy [99]. ESR1 mutations assessment using 
liquid biopsy (by digital-PCR or NGS) [100], is a current 
standard accepted by clinical guidelines [41, 77], as has been 
described earlier in this document.

CTC plasma count analysis after curative tumor resection 
surgery may facilitate early detection of minimal residual 
disease, aiding in the initiation of adjuvant therapy to pre-
vent recurrence. Furthermore, CTC plasma count can be 
used for monitoring disease response, detecting and predict-
ing risk of progression or relapse [101].

In the field of breast cancer, liquid biopsy has been a 
research hot-spot in recent years, playing a key role in mon-
itoring breast cancer metastasis, predicting disease recur-
rence, and assessing clinical drug resistance. Liquid biopsy 
has the advantages of non-invasive, high sensitivity, high 
specificity, and real-time dynamic monitoring. While clini-
cal application is not yet a reality, the research prospects of 
CTCs and cfDNA in breast cancer are worth exploring and 
discovering.

Researchers and clinicians are currently working to vali-
date the clinical utility of ctDNA in diagnostics, prognostics, 
the surveillance of minimal residual disease, and the moni-
toring of therapeutic response [94–96].
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MSI and MMRd

High microsatellite instability (MSI-H)/Mismatch repair defi-
ciency (MMRd) is considered a tumor-agnostic biomarker 
that predicts response to ICI in some advanced cancers [102]. 
However, the frequency of MSI-H/MMRd is very low among 
breast carcinomas, and currently it is not a recommended 
biomarker. While it is controversial whether women with 
Lynch syndrome have an increased risk of developing breast 
carcinomas, about 50% of breast carcinomas in patients with 
Lynch syndrome carry MMRd. Immunohistochemistry is 
the most frequently used method to detect MMRd, although 
other molecular methods can be used.

Tumor mutational burden

Tumor mutational burden (TMB) may be a good biomarker 
for the indication of immune checkpoint inhibitors, as it 
can reflect a high neoantigen burden, which can lead to an 
increased immune response. Moreover, the  FoundationOne® 
CDx assay has been approved as a companion diagnostic 
for tumor-agnostic pembrolizumab in patients with a TMB 
of ≥10 mutations per megabase. However, not all immune 

checkpoint inhibitors show the same correlation with TMB 
(i.e., atezolizumab) and not all assays have the same thresh-
olds. There is a need for harmonization, and care should be 
taken when interpretating TMB for specific treatments [103, 
104].

Conclusions

To plan adequate therapy in patients with early breast can-
cer (Fig. 2), pathology reports should include in all cases 
the expression and levels of ER, PR, HER2, and Ki-67, in 
addition to histological grade (as well as BRCA  in high-
risk HR-positive, HER2-negative patients, and TNBC) to 
assist prognosis and to establish current therapeutic options 
available, including hormone therapy, chemotherapy, anti-
HER2 therapy and PARP inhibitors. In ER-positive HER2-
negative early breast cancer patients, one of the several 
available genetic prognostic platforms (Oncotype  DX®, 
 MammaPrint®,  Prosigna®, or  EndoPredict®) may be used to 
establish prognosis and to discuss with the patient whether 
adjuvant treatment may be limited to hormonal therapy.

Fig. 2  Current routine use, research use, and not-recommended use 
of biomarkers for breast cancer. AKT: serine/threonine kinase; AR: 
androgen receptor; BRCA: breast cancer; CTCs: circulating tumour 
cells; ER: estrogen receptor; ESR1: estrogen receptor 1; FGFR1: 
fibroblast growth factor receptor 1; HER2: human epidermal growth 
factor receptor 2; HRD: homologous recombination deficiency; MSI: 
microsatellite instability; NGS: next-generation sequencing; NTRK: 
neurotrophic receptor tyrosine kinase 1; PD-L1: programmed death 
ligand 1; PIK3CA: phosphatidylinositol 4,5-bisphosphate 3-kinase 
catalytic subunit alpha; PR: progesterone receptor; PTEN: phos-

phatase and tensin homolog; TILs: tumour-infiltrating lymphocytes; 
TMB: tumor mutational burden; TROP-2: tumor-associated calcium 
signal transducer 2. 1Mammaprint®, Oncotype  DX®,  Prosigna® or 
 EndoPredict® in early luminal breast cancer with low risk of recur-
rence; 2In advanced triple-negative or luminal breast cancer; 3In 
advanced triple-negative breast cancer; 4In advanced luminal breast 
cancer; 5Some studies relate them to responses to neoadjuvant chem-
otherapy, 6Approved in the United States of America as a companion 
diagnostic to a PI3K inhibitor
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In advanced breast cancer, physicians should have avail-
able (in addition to ER, PR, Ki-67 and HER2) the results 
for BRCA  and PI3K in HR-positive, HER2-negative cases, 
ESR1 in ER-positive, HER2-negative cases after progression 
of first-line hormonal therapy including a CDK inhibitor, 
and PD-L1 in TNBC.

Newer biomarkers and technologies including TILs, HRD 
testing, AKT pathway activation, and NGS are experimental 
at this point. Other biomarkers such as NTRK or MSI may 
be useful in a limited subset of advanced breast carcinomas 
although are not standard tests at this point.
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